By Topic

A Chirp Transform Algorithm for Processing Squint Mode FMCW SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhi-Hong Jiang ; Sch. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Hunan ; Kan Huang-Fu ; Jian-wei Wan

Frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) is a lightweight cost-effective high-resolution airborne imaging radar. In squint case, the frequency scaling algorithm, which is suitable for processing nonchirped raw data, cannot be used directly in FMCW SAR data processing because of low system sampling frequency. On the other hand, the continuous antenna motion of FMCW SAR can cause serious distortions in the reconstructed images. In this letter, an improved algorithm called the chirp transform algorithm is proposed. When the effects of the residual video phase are negligible, the algorithm uses a chirp transform to perform the time scaling operation to alleviate the sampling frequency problem. It requires only fast Fourier transforms and multiplications. The range cell migration introduced by the continuous motion is also compensated completely in range-Doppler domain. The algorithm performances are analyzed and are supported by point target simulation experiments.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 3 )