Cart (Loading....) | Create Account
Close category search window
 

Logistic Model Tree Extraction From Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dancey, D. ; Manchester Metropolitan Univ., Manchester ; Bandar, Z.A. ; Mclean, D.

Artificial neural networks (ANNs) are a powerful and widely used pattern recognition technique. However, they remain "black boxes" giving no explanation for the decisions they make. This paper presents a new algorithm for extracting a logistic model tree (LMT) from a neural network, which gives a symbolic representation of the knowledge hidden within the ANN. Landwehr's LMTs are based on standard decision trees, but the terminal nodes are replaced with logistic regression functions. This paper reports the results of an empirical evaluation that compares the new decision tree extraction algorithm with Quinlan's C4.5 and ExTree. The evaluation used 12 standard benchmark datasets from the university of California, Irvine machine-learning repository. The results of this evaluation demonstrate that the new algorithm produces decision trees that have higher accuracy and higher fidelity than decision trees created by both C4.5 and ExTree.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 4 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.