Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

High-Resolution Measurement of Resonant Wave Patterns by Perturbing the Evanescent Field Using a Nanosized Probe in a Transmission Scanning Near-Field Optical Microscopy Configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hopman, W.C.L. ; Twente Univ., Enschede ; Stoffer, R. ; de Ridder, R.M.

In order to model transmission scanning near-field optical microscopy (T-SNOM) experiments, we study the interaction between a nanosized atomic-force-microscopy-type probe and the optical field in a microcavity (MC) at or near resonance. Using a 2-D cross-sectional model of an experimentally studied photonic crystal MC, we have simulated the T-SNOM method by scanning a probe over the surface while monitoring the transmitted and reflected power. The simulations were performed for two probe materials: silicon and silicon nitride. From the probe-induced change in the transmission and reflection spectra, a wavelength shift was extracted. A shift almost proportional to the local field intensity was found if the resonator was excited just below a resonance wavelength. However, at the spots of highest interaction, we observed that besides the desired resonance wavelength shift, there was an increase in scattering. Furthermore, by moving the probe at such a spot in the vertical direction to a height of approximately 0.5, a 5% increase in transmission can be established because the antiresonant condition is satisfied. Finally, a 2-D top view simulation is presented of the experimentally studied T-SNOM method, which shows a remarkably good correspondence in intensity profile, except for the exact location of the high-interaction spots.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 7 )