By Topic

All-Optical Decision-Gating of 10-Gb/s RZ Data in a Semiconductor Optical Amplifier Temporally Gain-Shaped With Dark-Optical-Comb

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gong-Ru Lin ; Nat. Taiwan Univ., Taipei ; Kun-Chieh Yu ; Ci-Ling Pan ; Yu-Sheng Liao

We demonstrate a novel all-optical noninverted OC-192 return-to-zero (RZ) decision-gate by using a semiconductor optical amplifier (SOA) which is gain-controlled to achieve an extremely high cross-gain-modulation depth and a narrow gain window. A dark-optical-comb generated by reshaping the optical clock RZ data in a Mach-Zehnder intensity modulator is employed as an injecting source to temporally deplete most of the gain in the SOA. Such a dark-optical-comb injected SOA decision-gate exhibits improved 3R regeneration performances such as a timing tolerance of 33.5 ps, Q -factor of 8.1, an input dynamical tolerance of 14 dB, and an extinction ratio (ER) of 14 dB. The deviation between the wavelengths of backward injected dark-optical-comb and input RZ data for optimizing the ER of the decision-gate is determined as Deltalambda=19 nm. Under a threshold operating dark-optical-comb power of 7 dBm, such a decision-gate can recover the -18.5-dBm degraded RZ data with a bit-error-rate of less than at 10-9 Gb/s. A negative power penalty of -4.2 dB is demonstrated for the RZ data after 50-km propagation and decision gating.

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 7 )