By Topic

Per-Stream QoS and Admission Control in Ethernet Passive Optical Networks (EPONs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dhaini, A.R. ; Concordia Univ., West Montreal ; Assi, C.M. ; Maier, M. ; Shami, A.

Ethernet passive optical networks (EPONs) are designed to deliver services for numerous applications such as voice over Internet protocol, standard and high-definition video, video conferencing (interactive video), and data traffic. Various dynamic bandwidth allocation and intra-optical network unit (ONU) scheduling algorithms have been proposed to enable EPONs to deliver differentiated services for traffic with different quality of service (QoS) requirements. However, none of these protocols and schedulers can guarantee bandwidth for each class of service nor can they protect the QoS level required by admitted real-time traffic streams. In this paper, we propose the first framework for per-stream QoS protection in EPONs using a two-stage admission control (AC) system. The first stage enables the ONU to perform flow admission locally according to the bandwidth availability, and the second stage allows for global AC at the optical line terminal. Appropriate bandwidth allocation algorithms are presented as well. An event-driven simulation model is implemented to study the effectiveness of the proposed schemes in providing and protecting QoS.

Published in:

Lightwave Technology, Journal of  (Volume:25 ,  Issue: 7 )