By Topic

Support Vector Networks in Adaptive Friction Compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, G.L. ; Sun Yat-Sen Univ., Guangzhou ; Li, Y.F. ; Bi, D.X.

This paper presents our research on how support vector regression (SVR) and parametric adaptive learning, which are normally used independently, can be exploited together to benefit adaptive neural control. In the context of friction compensation for servo-motion control systems, we present the notion of support vector networks which play an essential role in combining SVR and adaptive neural network (NN) in cooperation for friction estimation. The analysis shows that the proposed support vector network contributes not only to the performance improvement but also to the practical usefulness in adaptive friction compensation. Experimental results are reported to demonstrate the effectiveness of the proposed approach.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 4 )