By Topic

Neural-Network-Based Approximate Output Regulation of Discrete-Time Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weiyao Lan ; Xiamen Univ., Fujian ; Jie Huang

The existing approaches to the discrete-time nonlinear output regulation problem rely on the offline solution of a set of mixed nonlinear functional equations known as discrete regulator equations. For complex nonlinear systems, it is difficult to solve the discrete regulator equations even approximately. Moreover, for systems with uncertainty, these approaches cannot offer a reliable solution. By combining the approximation capability of the feedforward neural networks (NNs) with an online parameter optimization mechanism, we develop an approach to solving the discrete nonlinear output regulation problem without solving the discrete regulator equations explicitly. The approach of this paper can be viewed as a discrete counterpart of our previous paper on approximately solving the continuous-time nonlinear output regulation problem.

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 4 )