By Topic

Satellite Microwave Remote Sensing of Boreal and Arctic Soil Temperatures From AMSR-E

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Methods are developed and evaluated to retrieve surface soil temperature information for the advanced microwave scanning radiometer on earth observing system for seven boreal forest and Arctic tundra biophysical monitoring sites across Alaska and Northern Canada. A multiple-band iterative radiative transfer process-based method producing dynamic vegetation and snow cover correction quantities and an empirical multiple regression method using several frequencies are employed. The seasonal pattern of microwave emission and relative accuracy of the soil temperature retrievals are influenced strongly by landscape properties, including the presence of open water, vegetation type and seasonal phenology, snow cover, and freeze-thaw transitions. The retrieval of soil temperature is similar for the two methods with an overall root-mean-square error of 3.1-3.9 K during summer thawed conditions, with a larger error occurring in winter during periods of dynamic snow cover and freeze-thaw state. These results indicate that at high latitudes, the influence of the atmosphere may be less important than that of surface conditions in determining the relative accuracy of the estimated soil temperature. Impacts of surface conditions on surface emissivity, observed brightness temperature, and estimated soil temperature are discussed.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 7 )