By Topic

Field Programmable Analog Arrays for Conditioning Ultrasonic Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aldo Baccigalupi ; Univ. di Napoli Federico II, Naples ; Annalisa Liccardo

This paper proposes the use of field programmable analog arrays (FPAAs) as adaptive conditioning blocks for ultrasonic sensors. The uncertainty achievable through this technique, in fact, results very sensitive to the measurement conditions, due to the attenuation affecting the echo during its propagation. Indeed, FPAAs emulate analog circuits whose characteristics have to be dynamically tuned according to different operating conditions. Actually, the signal provided by the ultrasonic sensor is properly processed in order to improve the overall measurement accuracy. In this paper, the prototype of a distance meter based on time-of-flight (TOF) measurement is presented in order to evidence the advantages gained by FPAA features in processing the sensor output to compensate echo attenuation and distortion versus target distance. The prototype working is supervised by a digital signal controller (DSC) whose tasks are: 1) driving the ultrasonic transducer; 2) performing the echo acquisition; 3) tuning on the fly the FPAA features; 4) evaluating the TOF; 5) measuring the target distance; and 6) delivering the final result to the end user. This paper is completed by the results achieved in a number of experimental tests allowing interesting considerations to be drawn. In particular, the experiments confirm the prototype reliability and effectiveness also with ultrasonic echoes characterized by very low signal-to-noise ratios.

Published in:

IEEE Sensors Journal  (Volume:7 ,  Issue: 8 )