By Topic

Efficient Design for Testability Solution Based on Unsatisfiability for Register-Transfer Level Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lingappan, L. ; Princeton Univ., Princeton ; Jha, N.K.

In this paper, we present a novel and accurate method for identifying design for testability (DFT) solutions for register-transfer level (RTL) circuits. Test generation proceeds by abstracting the circuit components using input/output propagation rules so that any justification/propagation event can be captured as a Boolean implication. Consequently, the RTL test generation problem is reduced to a satisfiability (SAT) instance. If a given SAT instance is not satisfiable, then we identify Boolean implications (also known as the unsatisfiable segment) that are responsible for unsatisfiability. We show that adding DFT elements is equivalent to modifying these clauses such that the unsatisfiable segment becomes satisfiable. The proposed DFT technique is both fast and accurate as it is applicable to RTL and mixed gate-level/RTL circuits and uses exact unsatisfiability conditions to identify the DFT solutions.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 7 )