Cart (Loading....) | Create Account
Close category search window

Unnesting Scalar SQL Queries in the Presence of Disjunction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brantner, M. ; Database Res. Group, Mannheim Univ., Germany ; May, N. ; Moerkotte, G.

Optimizing nested queries is an intricate problem. It becomes even harder if in a nested query the linking predicate or the correlation predicate occurs disjunctively. We present the first unnesting strategy that can effectively deal with such queries. The starting point of our approach is to translate SQL into the relational algebra extended by bypass operators. Then we present for the first time unnesting equivalences which are valid for algebraic expressions containing bypass operators. Applying these to the translated queries results in our effective unnesting strategy for nested SQL queries with disjunction. With an extensive experimental study (including three commercial DBMSs), we demonstrate the possible performance gains of our approach.

Published in:

Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on

Date of Conference:

15-20 April 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.