By Topic

A Game-Theoretic View on the Interference Channel with Random Access

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Simeone, O. ; NJIT, University Heights ; Bar-Ness, Y.

As an important building block of cognitive radio networks, the interference channel with distributed and competing radio access is currently an active area of research. In this work, a basic two-by-two interference channel is studied by considering random packet arrivals and random access. In particular, each transmitter is assumed to select independently and concurrently a transmission probability based on the state of the system queues. Both the cases of perfect and partial information about the transmitters' backlogs are addressed. The system is analyzed using tools from game theory, and specifically from the theory of stochastic games. The main conclusion is that random packet arrival has a beneficial effect on the efficiency of decentralized random access. This result is achieved by comparing the efficiency of Nash equilibria for the case of backlogged users with the corresponding equilibria in presence of random packet arrivals via numerical simulations.

Published in:

New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on

Date of Conference:

17-20 April 2007