By Topic

Multi-Objective Semiconductor Manufacturing Scheduling: A Random Keys Implementation of NSGA-II

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Scott J. Mason ; University of Arkansas, Fayetteville, AR 72701 USA. 479-575-5521; e-mail: ; Mary E. Kurz ; Michele E. Pfund ; John W. Fowler
more authors

We examine a complex, multi-objective semiconductor manufacturing scheduling problem involving two batch processing steps linked by a timer constraint. This constraint requires that any job completing the first processing step must be started on the succeeding second machine within some allowable time window; otherwise, the job must repeat its processing on the first step. We present a random keys implementation of NSGA-II (nondominated sorting genetic algorithm) for our problem of interest and investigate the efficacy of different batching policies in terms of the number of approximate efficient solutions that are produced by NSGA-II over a wide range of experimental problem instances. Experimental results suggest a full batch policy can produce superior solutions as compared to greedy batching policies under the experimental conditions examined

Published in:

2007 IEEE Symposium on Computational Intelligence in Scheduling

Date of Conference:

1-5 April 2007