By Topic

Observations on greedy composite Newton methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The only robust general-purpose numerical methods for approximating the solution to systems of nonlinear algebraic equations (NAEs) are based on Newton's method. Many variants of Newton's method exist in order to take advantage of problem structure; it is often computationally infeasible to solve a given problem without taking some advantage of this structure. It is generally impossible to know a priori which variant of Newton's method will be optimal for a given problem. In this paper, we describe an algorithm for automatically selecting a composite Newton method, i.e., a sequential combination of Newton variants, for solving NAEs. The algorithm is based on a greedy principle that updates the current state at regular intervals according to the best performing Newton variant. Preliminary results show that it is possible for composite Newton methods to outperform optimal classical implementations of Newton's method, i.e., ones that only use one Newton variant on a given problem.

Published in:

High Performance Computing Systems and Applications, 2007. HPCS 2007. 21st International Symposium on

Date of Conference:

13-16 May 2007