By Topic

Conceptual Case for Assimilating Interferometric Synthetic Aperture Radar Data Into the HAZUS-MH Earthquake Module

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
David M. Tralli ; NASA Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA ; Ronald G. Blom ; Eric J. Fielding ; Andrea Donnellan
more authors

The study of the Earth as a system is being adopted widely by geoscientists. Numerical models and simulations are providing the capability to rapidly test hypotheses and make forecasts of complex geophysical behavior. International efforts are seeking to integrate existing and emerging Earth observation systems into a global network, with enhanced data distribution, models, and decision support tools. Remote sensing is poised to fulfil the increasing need for a synoptic framework. However, the desire to improve the connection between scientific research and societal benefits has not been matched with resources and tools required to bridge the gap between research and applications. Natural hazards research and disaster management are a prime example. Here, we present a conceptual case for how interferometric synthetic aperture radar (InSAR) data could make a definitive contribution to understanding earthquake processes while simultaneously supporting policy- and decision-making. InSAR measurements derived from time series of radar observations from Earth orbit uniquely can provide geographically comprehensive maps of surface deformation. Observing system simulations are suggested to evaluate the potential contributions of a future system. Simulations would adopt an open seismic hazard analysis (SHA) framework, OpenSHA, recognizing the need for more physics-based modeling and computational infrastructure. SHA is employed by the HAZUS-MH earthquake module to estimate losses. InSAR measurements of strain accumulation would provide event magnitude recurrence bounds for probabilistic SHA, while coseismic InSAR measurements would add constraints on fault rupture models for deterministic approaches. Moreover, interferograms would be incorporated graphically as proxy seismic risk maps for planning and mitigation

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 6 )