By Topic

Fault-Tolerant Time-Triggered Communication Using CAN

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Short, M. ; Univ. of Leicester, Leicester ; Pont, M.J.

The controller area network (CAN) protocol was originally introduced for automotive applications but is now also widely used in process control and many other industrial areas. In this paper, we present a low-cost redundancy-management scheme for replicated CAN channels that helps to ensure that clocks (and, hence, tasks) on the distributed nodes remain synchronized in the event of failures in the underlying communication channels, without the need for expensive or proprietary interface electronics. We argue that, when using this framework with duplicated channels, the probability of inconsistent message delivery drops to acceptable levels for a wide range of systems. Through an analysis of the protocol and a case study, we conclude that the creation of reliable, low-cost, distributed embedded systems using CAN is a practical possibility.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:3 ,  Issue: 2 )