Cart (Loading....) | Create Account
Close category search window
 

Polymer Light-Emitting Electrochemical Cells for High-Efficiency Low-Voltage Electroluminescent Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qingjiang Sun ; Inst. of Chem., Acad. Sinica, Beijing ; Li, YongFang ; Qibing Pei

Organic light-emitting devices exhibiting high power conversion efficiency and long operating lifetime may potentially be achieved with the polymer light-emitting electrochemical cell (LEC) configuration. An LEC device typically uses a thin layer of conjugated polymer sandwiched between two contact electrodes. The polymer layer contains an ionically conductive species that are essential in the formation of a light-emitting p-i-n junction. LEC devices are characterized with balanced electron and hole injections, high current density at relatively low bias voltages (2-4 V), and high electroluminescent power efficiency. We will describe the working mechanism of the LECs and review the recent developments in LEC materials, device fabrication and performance. Among the important developments are planar (surface-typed) LECs, bilayer LECs that emit different colors at forward and reverse biases, frozen p-i-n junction LECs that functions like diodes, and phosphorescent LECs. Extensive efforts have been made to improve the LEC performance by controlling the blend morphology, including the use of bipolar surfactant additives and new electrolytes, the synthesis of conjugated polymers with ion-transporting main chain segments or side groups and polyelectrolyte. Degradation mechanisms that limit the lifetime of the LECs will also be discussed

Published in:

Display Technology, Journal of  (Volume:3 ,  Issue: 2 )

Date of Publication:

June 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.