By Topic

Additive Support Vector Machines for Pattern Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doumpos, M. ; Dept. of Production Eng. & Manage., Tech. Univ. Crete, Chania ; Zopounidis, C. ; Golfinopoulou, V.

Support vector machines (SVMs) are one of the most popular methodologies for the design of pattern classification systems with sound theoretical foundations and high generalizing performance. The SVM framework focuses on linear and nonlinear models that maximize the separating margin between objects belonging in different classes. This paper extends the SVMmodeling context toward the development of additive models that combine the simplicity and transparency/interpretability of linear classifiers with the generalizing performance of nonlinear models. Experimental results are also presented on the performance of the new methodology over existing SVM techniques

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 3 )