By Topic

On Probing Signal Design for MIMO Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian Li ; Dept. of Electrical and Computer Engineering, University of Florida, P. O. Box 116130, Gainesville, FL 32611, USA. ; Petre Stoica ; Yao Xie

A MIMO (multi-input multi-output) radar system, unlike a standard phased-array radar, can choose freely the probing signals transmitted via its antennas to maximize the power around the locations of the targets of interest, or more generally to approximate a given transmit beampattern, and also to minimize the cross-correlation of the signals reflected back to the radar by the targets of interest. In this paper, we show how the above desirable features can be achieved by designing the covariance matrix of the probing signal vector transmitted by the radar. Moreover, in a numerical study, we show that the proper choice of the probing signals can significantly improve the performance of adaptive MIMO radar techniques. Additionally, we demonstrate the advantages of several MIMO transmit beampattern designs, including a beampattern matching design and a minimum sidelobe beampattern design, over their phased- array counterparts.

Published in:

2006 Fortieth Asilomar Conference on Signals, Systems and Computers

Date of Conference:

Oct. 29 2006-Nov. 1 2006