By Topic

Reducing the Calibration Effort for Probabilistic Indoor Location Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

WLAN location estimation based on 802.11 signal strength is becoming increasingly prevalent in today's pervasive computing applications. Among the well-established location determination approaches, probabilistic techniques show good performance and, thus, become increasingly popular. For these techniques to achieve a high level of accuracy, however, a large number of training samples are usually required for calibration, which incurs a great amount of offline manual effort. In this paper, we aim to solve the problem by reducing both the sampling time and the number of locations sampled in constructing a radio map. We propose a novel learning algorithm that builds location-estimation systems based on a small fraction of the calibration data that traditional techniques require and a collection of user traces that can be cheaply obtained. When the number of sampled locations is reduced, an interpolation method is developed to effectively patch a radio map. Extensive experiments show that our proposed methods are effective in reducing the calibration effort. In particular, unlabeled user traces can be used to compensate for the effects of reducing the calibration effort and can even improve the system performance. Consequently, manual effort can be reduced substantially while a high level of accuracy is still achieved

Published in:

IEEE Transactions on Mobile Computing  (Volume:6 ,  Issue: 6 )