By Topic

Design & Implementation an Adaptive Takagi-Sugeno Fuzzy Neural Networks Controller for the 2-Links Pneumatic Artificial Muscle (PAM) Manipulator using in Elbow Rehabilitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyoung Kwan Ahn ; School of Mechanical and Automotive Engineering, University of Ulsan, Korea; San 29, Muger2dong, Nam-gu, Ulsan, 680-764, Korea. ; Ho Pham Huy Anh

This paper presents the design, development and implementation of an adaptive Takagi-Sugeno fuzzy neural networks (A-FNN) controller suitable for real-time manipulator control applications. The unique feature of the A-FNN controller is that it has dynamic self-organizing structure, fast learning speed, good generalization and flexibility in learning. The proposed adaptive algorithm focuses on fast and efficiently optimizing weighting parameters of A-FNN controller. This approach of rapid prototyping is employed to implement the A-FNN controller with a view of controlling the prototype 2-axes pneumatic artificial muscle (PAM) manipulator in real time. The A-FNN controller was implemented through real-time Windows target run in real-time Matlab Simulinkreg. The performance of this novel proposed controller was found to be outperforming and it matches favorably with the simulation results. Keywords: pneumatic artificial muscle (PAM), highly nonlinear 2-axes PAM manipulator, adaptive fuzzy neural networks controller (A-FNN), real-time position control, trajectory tracking, rehabilitation device.

Published in:

2006 First International Conference on Communications and Electronics

Date of Conference:

10-11 Oct. 2006