By Topic

Northern Hemisphere Snow-Covered Area Mapping: Optical Versus Active and Passive Microwave Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tedesco, M. ; NASA Goddard Space Flight Center, Greenbelt, MD ; Miller, J.

Spaceborne passive microwave data have been available for the past 27 years, and have supported the development of several algorithms for the retrieval of snow water equivalent and snow depth that, in turn, can be used for mapping snow-covered areas. In contrast, only recently has the application of spaceborne active microwave instruments been investigated for remote sensing of snow on a global scale. This raises the question of whether a technique combining active and passive microwave data can improve the mapping of snow parameters with respect to techniques based solely on passive data. In this letter, we report results concerning the mapping of snow-covered area (SCA) in the Northern Hemisphere between the years 2000 and 2004 derived from the combination of the brightness temperatures at 19.35 and 37 GHz measured by the Special Sensor Microwave Imager Radiometer with backscatter coefficients at 13.4 GHz measured by the NASA's QuickSCAT. SCA derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) is used as a reference to evaluate the performance of the microwave-based techniques and their combination. Results show that, generally, the technique using passive data provides better agreement with MODIS SCA than the technique using only scatterometer data. However, the results when both datasets are used show considerable improvement, demonstrating the potential benefits of a multisensor approach

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 2 )