By Topic

Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ayers, S. ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY ; Gillis, K.D. ; Lindau, M. ; Minch, B.A.

High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-mum, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35 mumtimes15 mum and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2-kHz bandwidth is ap110 fA. The maximum charge storage capacity at 2 kHz is 1.26times106 electrons

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 4 )