Cart (Loading....) | Create Account
Close category search window
 

Modeling of Viscoelastic Contacts and Evolution of Limit Surface for Robotic Contact Interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tiezzi, P. ; DEIM, Bologna Univ. ; Imin Kao

Viscoelastic contact is a type of contact which includes, in addition to linear or nonlinear elastic response, time-dependent response due to relaxation or creep phenomena that govern the contact behavior. The characteristics of the time-dependent relaxation of such a viscoelastic contact are typically exponentially decaying functions, and exponentially growing functions for creep, respectively. Such contacts can be found in anthropomorphic robotic fingers, soft materials, viscoelastic skin with rigid core, and human fingers and feet. In this paper, the nature of viscoelastic contacts is investigated, and the evolution of their friction limit surfaces and of the pressure distributions at the contact interface are studied. Two cases commonly found in robotic grasping and manipulation are discussed. Based on the modeling formulation, it is found that the two important parameters of analysis and modeling for such contacts, i.e., the radius of contact area and the profile of pressure distribution, can be chosen using proposed coupling equations as the viscoelastic contact interface evolves with time. The new contribution of this paper includes a proposal of coupling equations between the two important parameters to describe the viscoelastic contact interface, and a study of the evolution of limit surfaces for viscoelastic contact interface due to temporal dependency, and the implication on grasp stability. It is found from the evolution of limit surfaces that when normal force is applied with typical viscoelastic contacts, grasp becomes more stable as time elapses. The modeling can be applied to the design of fingertips and the analysis of robotic grasping and manipulation involving viscoelastic fingers

Published in:

Robotics, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

April 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.