Cart (Loading....) | Create Account
Close category search window
 

Achieving 100% Throughput in Reconfigurable Optical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brzezinski, A. ; Lab. for Inf. & Decision Syst., Massachusetts Inst. of Technol., Cambridge, MA ; Modiano, E.

We study the maximum throughput properties of dynamically reconfigurable optical networks having wavelength and port constraints. Using stability as the throughput performance metric, we outline the single-hop and multi-hop stability regions of the network. We describe throughput-optimal dynamic algorithms employing joint WDM reconfiguration and electronic layer routing decisions. Our approach is a generalization of the BvN decomposition technique that has been so effective at expressing any stabilizable rate matrix for input-queued switches as a convex combination of service configurations. We consider generalized decompositions for physical topologies with wavelength and port constraints. For the case of a single wavelength per optical fiber, we link the decomposition problem to a corresponding Routing and Wavelength Assignment (RWA) problem. We characterize the stability region of the reconfigurable network, employing both single-hop and multi- hop routing, in terms of the RWA problem applied to the same physical topology. We derive expressions for two geometric properties of the stability region: maximum stabilizable uniform arrival rate, and maximum scaled doubly substochastic region. These geometric properties provide a measure of the performance gap between a network having a single wavelength per optical fiber and its wavelength-unconstrained version. They also provide a measure of the performance gap between algorithms employing single-hop versus multi-hop electronic routing.

Published in:

INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings

Date of Conference:

23-29 April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.