By Topic

Noise Correlation-Aided Iterative Decoding for Magnetic Recording Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vanichchanunt, Pisit ; Dept. of Electr. Eng., Chulalongkorn Univ., Bangkok ; Woradit, K. ; Nakpeerayuth, S. ; Wuttisittikulkij, Lunchakorn
more authors

In this paper, three noise correlation-aided iterative decoding schemes are proposed for magnetic recording channels, where the correlation is imposed by the equalizer's spectral shaping effect. The first approach exploits the noise' correlation in the form of linear prediction-aided detection by increasing the number of detector trellis states invoked by the Bahl, Cocke, Jelinek, and Raviv (BCJR) detection algorithm. In the second approach, we have extended the first technique by employing both previous and future correlated noise samples in order to attain noise estimates. In order to achieve this objective, the classic BCJR algorithm has to be modified for the sake of additionally exploiting future noise samples. The third approach is designed for reducing the decoding complexity by applying the Viterbi algorithm (VA) to assist the detector in finding the encoded sequences associated with the survivor paths in the detector's trellis, without increasing the number of trellis states. We will demonstrate that for the classic PR4-equalized Lorentzian channel, the proposed schemes are capable of offering a performance gain in the range of 1.1-3.7 dB over that of a benchmark turbo decoding system at the BER of 10-5 and at a recording density of 2.86

Published in:

Communications and Information Technologies, 2006. ISCIT '06. International Symposium on

Date of Conference:

Oct. 18 2006-Sept. 20 2006