By Topic

A Cycle-Based Decomposition Method for Burst-Mode Asynchronous Controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Agyekum, M.Y. ; Dept. of Comput. Sci., Columbia Univ., New York, NY ; Nowick, S.M.

In this paper, a systematic and automated methodology is proposed for decomposing an asynchronous burst-mode (BM) controller into smaller sub-controllers, where each resulting sub-controller is activated on a communication channel. The proposed approach consists of a new decomposition algorithm, control micro-architecture and inter-controller communication protocol. This method has also been broadened to handle extended burst- mode (XBM) controllers. For both controller types, only a moderate amount of auxiliary hardware is required, and optimizations are proposed to eliminate or simplify this hardware. Initial runtime results for both burst-mode and extended burst- mode controllers are promising. Two of the largest BM benchmarks (dean-cache, scsi) were run using the Minimalist CAD tool and an optimized script. While the original controllers each timed out after 10 hours, the decomposition runs each completed in under 84 seconds. Further attempts to synthesize the original controllers using a suboptimal script succeeded, but with 16-200x greater runtime. Several XBM benchmarks were synthesized using the 3D CAD tool; one large complex controller (cdp-pl) was unable to complete while the decomposed run succeeded in under 197 seconds.

Published in:

Asynchronous Circuits and Systems, 2007. ASYNC 2007. 13th IEEE International Symposium on

Date of Conference:

12-14 March 2007