By Topic

Robust Pose Estimation and Recognition Using Non-Gaussian Modeling of Appearance Subspaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vik, T. ; Phillips Res. Eur., Hamburg ; Heitz, F. ; Charbonnier, P.

We present an original appearance model that generalizes the usual Gaussian visual subspace model to non-Gaussian and nonparametric distributions. It can be useful for the modeling and recognition of images under difficult conditions such as large occlusions and cluttered backgrounds. Inference under the model is efficiently solved using the mean shift algorithm

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 5 )