By Topic

High-Sensitivity Measurement of Thermal Deformation in a Stacked Multichip Package

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Morita, Y. ; Res. Inst. for Appl. Mech., Kyushu Univ., Fukuoka ; Arakawa, K. ; Todo, M.

The thermal deformation of a stacked multichip package, which is a newly developed electronic package, was measured by phase-shifting moireacute interferometry. We developed this method using a wedged glass plate as a phase shifter to obtain displacement fields having a sensitivity of 30nm/line. This method also enabled the quantitative determination of the strain distributions in all observation areas. Thermal loading was applied from room temperature (25degC) to elevated temperatures of 75degC and 100degC where the thermal strains were examined and compared. The results showed that the longitudinal strain epsivxx was concentrated at the ends of two silicon chips, and the longitudinal strain epsivyy increased between the two silicon chips. The shear strain gammaxy increased at the end of the lower silicon chip from 0.17% to 0.30% when the temperature increased by 25degC

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:30 ,  Issue: 1 )