By Topic

Reliability Modeling and Assessment of Embedded Capacitors in Organic Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Understanding and quantifying the RLC characteristics of the embedded passives under thermomechanical deformation during fabrication and accelerated thermal conditions is necessary for their successful implementation. Embedded passives are composite layers with dissimilar material properties compared to the neighboring layers in the integral substrate. The ongoing project explores the fabrication, multifield physics-based reliability modeling and accelerated testing of embedded passive test vehicles. As a first step, in this paper, the effect of thermomechanical deformation on the electrical characteristics of embedded capacitors is studied at frequencies from 100 KHz to 2 GHz using two test vehicles. Test vehicles with embedded passives were fabricated and were subjected to accelerated thermal cycles between -55degC to 125degC, between -40degC to 125degC and high humidity and temperature conditions of 85degC/85% RH. Significant changes in the electrical parameters of the embedded capacitors are observed. The fabrication process mechanics with multiphysics global-local modeling methodology is demonstrated to study the effect of thermal cycling on the electrical characteristics of embedded capacitors. The results obtained from the multiphysics global-local modeling methodology are validated against the measured electrical characteristics of the fabricated functional test boards. The effect of changes in electrical parameters of embedded passives on system performance of low-pass filters is presented

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:30 ,  Issue: 1 )