By Topic

Discrete Wavelet Transform on Consumer-Level Graphics Hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tien-Tsin Wong ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong ; Chi-Sing Leung ; Pheng-Ann Heng ; Jianqing Wang

Discrete wavelet transform (DWT) has been heavily studied and developed in various scientific and engineering fields. Its multiresolution and locality nature facilitates applications requiring progressiveness and capturing high-frequency details. However, when dealing with enormous data volume, its performance may drastically reduce. On the other hand, with the recent advances in consumer-level graphics hardware, personal computers nowadays usually equip with a graphics processing unit (GPU) based graphics accelerator which offers SIMD-based parallel processing power. This paper presents a SIMD algorithm that performs the convolution-based DWT completely on a GPU, which brings us significant performance gain on a normal PC without extra cost. Although the forward and inverse wavelet transforms are mathematically different, the proposed algorithm unifies them to an almost identical process that can be efficiently implemented on GPU. Different wavelet kernels and boundary extension schemes can be easily incorporated by simply modifying input parameters. To demonstrate its applicability and performance, we apply it to wavelet-based geometric design, stylized image processing, texture-illuminance decoupling, and JPEG2000 image encoding

Published in:

Multimedia, IEEE Transactions on  (Volume:9 ,  Issue: 3 )