By Topic

Global Optimization With Multivariate Adaptive Regression Splines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scott Crino ; US Mil. Acad., West Point, NY ; Donald E. Brown

This paper presents a novel procedure for approximating the global optimum in structural design by combining multivariate adaptive regression splines (MARS) with a response surface methodology (RSM). MARS is a flexible regression technique that uses a modified recursive partitioning strategy to simplify high-dimensional problems into smaller yet highly accurate models. Combining MARS and RSM improves the conventional RSM by addressing highly nonlinear high-dimensional problems that can be simplified into lower dimensions, yet maintains a low computational cost and better interpretability when compared to neural networks and generalized additive models. MARS/RSM is also compared to simulated annealing and genetic algorithms in terms of computational efficiency and accuracy. The MARS/RSM procedure is applied to a set of low-dimensional test functions to demonstrate its convergence and limiting properties

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:37 ,  Issue: 2 )