By Topic

Localization and Mapping for Autonomous Navigation in Outdoor Terrains : A Stereo Vision Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agrawal, M. ; SRI Int., Standford, CA ; Konolige, K. ; Bolles, R.C.

We consider the problem of autonomous navigation in unstructured outdoor terrains using vision sensors. The goal is for a robot to come into a new environment, map it and move to a given goal at modest speeds (1 m/sec). The biggest challenges are in building good maps and keeping the robot well localized as it advances towards the goal. In this paper, we concentrate on showing how it is possible to build a consistent, globally correct map in real time, using efficient precise stereo algorithms for map making and visual odometry for localization. While we have made advances in both localization and mapping using stereo vision, it is the integration of the techniques that is the biggest contribution of the research. The validity of our approach is tested in blind experiments, where we submit our code to an independent testing group that runs and validates it on an outdoor robot

Published in:

Applications of Computer Vision, 2007. WACV '07. IEEE Workshop on

Date of Conference:

Feb. 2007