By Topic

Minimax Regression with Bounded Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eldar, Y.C. ; Technion¿Israel Institute of Technology, Haifa, Israel. Email: ; Beck, A.

We consider the problem of estimating a vector z in the regression model b = Az + w where w is an unknown but bounded noise and an upper bound on the norm of z is available. To estimate z we propose a relaxation of the Chebyshev center, which is the vector that minimizes the worst-case estimation error over all feasible vectors z. Relying on recent results regarding strong duality of nonconvex quadratic optimization problems with two quadratic constraints, we prove that in the complex domain our approach leads to the exact Chebyshev center. In the real domain, this strategy results in a "pretty good" approximation of the true Chebyshev center. As we show, our estimate can be viewed as a Tikhonov regularization with a special choice of parameter that can be found efficiently. We then demonstrate via numerical examples that our estimator can outperform other conventional methods, such as least-squares and regularized least-squares, with respect to the estimation error.

Published in:

Electrical and Electronics Engineers in Israel, 2006 IEEE 24th Convention of

Date of Conference:

Nov. 2006