By Topic

Optimal Power Flow By Newton Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The classical optimal power flow problem with a nonseparable objective function can be solved by an explicit Newton approach. Efficient, robust solutions can be obtained for problems of any practical size or kind. Solution effort is approximately proportional to network size, and is relatively independent of the number of controls or binding inequalities. The key idea is a direct simultaneous solution for all of the unknowns in the Lagrangian function on each iteration. Each iteration minimizes a quadratic approximation of the Lagrangian. For any given set of binding constraints the process converges to the Kuhn-Tucker conditions in a few iterations. The challenge in algorithm development is to efficiently identify the binding inequalities.

Published in:

Power Apparatus and Systems, IEEE Transactions on  (Volume:PAS-103 ,  Issue: 10 )