Cart (Loading....) | Create Account
Close category search window
 

Cooperative Relay Broadcast Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yingbin Liang ; Dept. of Electr. Eng., Princeton Univ., NJ ; Veeravalli, V.V.

The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into two-user broadcast channels to support user cooperation. In the first channel, the partially cooperative RBC, only one user in the system acts as a relay. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the partially cooperative RBC is degraded, the achievable rate region is shown to be the capacity region. Two Gaussian cases of the partially cooperative RBC are studied. For the system where the additive white Gaussian noise (AWGN) term at one receiver is a degraded version of the other, which we refer to as the D-AWGN partially cooperative RBC, the capacity region is established. For the system where the AWGN term at one receiver is independent of the other, which we refer to as the AWGN partially cooperative RBC, inner and outer bounds on the capacity region are derived and are shown to be close. Furthermore, it is shown that feedback does not increase the capacity region for the degraded partially cooperative RBC, but that it improves the capacity region for the nondegraded version. In particular, feedback improves the capacity region for the AWGN partially cooperative RBC. In the second channel model being studied in the paper, the fully cooperative RBC, both users can act as relay nodes. All the results for the partially cooperative RBC are correspondingly generalized to the fully cooperative RBC. In particular, capacity regions are established for the degraded and D-AWGN fully cooperative RBCs. The capacity region is also established for the fully cooperative RBC with feedback. It is further shown that the AWGN fully cooperative RBC has a larger achievable rate region than its partially cooperative counterpart. The results illustrate that relaying and user cooperation are po- werful techniques for improving the capacity of broadcast channels

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.