Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Mining Mobile Sequential Patterns in a Mobile Commerce Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-Huang Yun ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Ming-Syan Chen

In this paper, we explore a new data mining capability for a mobile commerce environment. To better reflect the customer usage patterns in the mobile commerce environment, we propose an innovative mining model, called mining mobile sequential patterns, which takes both the moving patterns and purchase patterns of customers into consideration. How to strike a compromise among the use of various knowledge to solve the mining on mobile sequential patterns is a challenging issue. We devise three algorithms (algorithm TJLS, algorithm TJPT, and algorithm TJPF) for determining the frequent sequential patterns, which are termed large sequential patterns in this paper, from the mobile transaction sequences. Algorithm TJLS is devised in light of the concept of association rules and is used as the basic scheme. Algorithm TJPT is devised by taking both the concepts of association rules and path traversal patterns into consideration and gains performance improvement by path trimming. Algorithm TJPF is devised by utilizing the pattern family technique which is developed to exploit the relationship between moving and purchase behaviors, and thus is able to generate the large sequential patterns very efficiently. A simulation model for the mobile commerce environment is developed, and a synthetic workload is generated for performance studies. In mining mobile sequential patterns, it is shown by our experimental results that algorithm TJPF significantly outperforms others in both execution efficiency and memory saving, indicating the usefulness of the pattern family technique devised in this paper. It is shown by our results that by taking both moving and purchase patterns into consideration, one can have a better model for a mobile commerce system and is thus able to exploit the intrinsic relationship between these two important factors for the efficient mining of mobile sequential patterns

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:37 ,  Issue: 2 )