By Topic

Adaptive Forward Error Control for Digital Satellite Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khan, M.H. ; Concordia University ; Le-Ngoc, T. ; Bhargava, V.K.

Two hybrid schemes of time-frequency resource sharing to increase the rain margin of Ku-and Ka-band satellite systems are proposed. Scheme 1 requires sharing a small pool of bandwidth for adaptive forward error control coding, sharing a small pool of time frame for rate reduction, and sharing a portion of low frequency time-division multiple access (TDMA) back-up frame for downlink transmission to the rain affected stations. Scheme 2 utilizes variable rate modulation and forward error correction, shares a small pool of time frame for rate reduction, and shares a portion of low frequency TDMA back-up frame. Effective usable capacities of the system using these schemes are calculated. Distribution of resources in order to maximize the effective usable capacity is also analyzed. The results obtained are compared with other adaptive schemes. Preliminary analysis shows that the utilized capacity of scheme 1 exceeds 99 percent of the effective usable capacity possible if it never rains for an outage of 0.05 percent and fade margin of 2.5 dB. For scheme 2 similar performance is achievable at a fade margin of 1.5 dB. For higher outage objectives the loss of effective utilized capacity is higher for scheme 2.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-21 ,  Issue: 4 )