By Topic

On Scalable Attack Detection in the Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramana Rao Kompella ; Dept. of Comput. Sci., Univ. of California San Diego, La Jolla, CA ; Singh, S. ; Varghese, G.

Current intrusion detection and prevention systems seek to detect a wide class of network intrusions (e.g., DoS attacks, worms, port scans) at network vantage points. Unfortunately, even today, many IDS systems we know of keep per-connection or per-flow state to detect malicious TCP flows. Thus, it is hardly surprising that these IDS systems have not scaled to multi-gigabit speeds. By contrast, both router lookups and fair queuing have scaled to high speeds using aggregation via prefix lookups or DiffServ. Thus, in this paper, we initiate research into the question as to whether one can detect attacks without keeping per-flow state. We will show that such aggregation, while making fast implementations possible, immediately causes two problems. First, aggregation can cause behavioral aliasing where, for example, good behaviors can aggregate to look like bad behaviors. Second, aggregated schemes are susceptible to spoofing by which the intruder sends attacks that have appropriate aggregate behavior. We examine a wide variety of DoS and scanning attacks and show that several categories (bandwidth based, claim-and-hold, port-scanning) can be scalably detected. In addition to existing approaches for scalable attack detection, we propose a novel data structure called partial completion filters (PCFs) that can detect claim-and-hold attacks scalably in the network. We analyze PCFs both analytically and using experiments on real network traces to demonstrate how we can tune PCFs to achieve extremely low false positive and false negative probabilities

Published in:

Networking, IEEE/ACM Transactions on  (Volume:15 ,  Issue: 1 )