By Topic

FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Afxendios Tychopoulos ; Dept. of Electr. & Comput. Eng., Patras Univ. ; Odysseas Koufopavlou ; Ioannis Tomkos

The recent establishment of the 10/40 Gbps technology in DWDM optical links heralds a new era of bandwidth abundance, in response to an explosive growth of services provided through the Internet. Forward error correction (FEC) is one of the key-enabling elements in this long-awaited achievement. Borrowed from the wireless world, FEC was initially introduced in wavelength-division multiplex (WDM) optical-systems to combat amplified spontaneous emission (ASE), a form of noise native in optical amplifiers (OAs). These first generation FEC systems have been associated with a coding-gain of approximately 6 dB. However, as transmission rates gradually scaled towards 10 Gbps, other optical-impairments gained in significance, primarily nonlinear (NL) effects but also chromatic-dispersion (CD) and polarization mode dispersion (PMD). FEC turned out to be invaluable in mitigating these impairments as well

Published in:

IEEE Circuits and Devices Magazine  (Volume:22 ,  Issue: 6 )