By Topic

Piezoelectric Disk Resonators Based on Epitaxial AlGaAs Films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ken Deng ; Center of Micro Eng., Maryland Univ., College Park, MD ; Parshant Kumar ; Lihua Li ; Don L. DeVoe

A new design for anisotropic piezoelectric disk resonators is demonstrated using single-crystal Al0.3Ga0.7As films. The shape of the disk resonator is based on the velocity propagation profile of the elastic wave in the plane of the piezoelectric film, with lateral dimensions scaled to the half wavelength of the desired resonance frequency. The resonators are designed with supports which emulate free-free boundary conditions. Prototype resonators are fabricated using a three-layer Al0.3Ga0.7As heterostructure containing silicon-doped electrodes and an undoped piezoelectric Al0.3Ga 0.7As layer. Quality factors as high as 11 200 are measured in air for a 23.25 MHz fundamental resonant mode, with a corresponding motional resistance of 1.67 kOmega. A finite-element model for the resonator design is also described. Simulation results agree well with both theoretical calculations and experimental data

Published in:

Journal of Microelectromechanical Systems  (Volume:16 ,  Issue: 1 )