By Topic

A Novel Needle-Type SV-GMR Sensor for Biomedical Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mukhopadhyay, S.C. ; Inst. of Inf. Sci. & Technol., Massey Univ. ; Chomsuwan, K. ; Gooneratne, C.P. ; Yamada, S.

Cancer is the most deadly disease in the world today. There is a variety of different treatment methods for cancer, including radiotherapy and chemotherapy with anticancer drugs that have been in use over a long period of time. Hyperthermia is one of the cancer treatment methods that utilizes the property that cancer cells are more sensitive to temperature than normal cells. The control of temperature is an important task in achieving success using this treatment method. This paper reports the development of a novel needle-type nanosensor based on the spin-valve giant magnetoresistive (SV-GMR) technique to measure the magnetic flux density inside the body via pricking the needle. The sensor has been fabricated. The modeling and experimental results of flux density measurement have been reported. From the information of flux density, the temperature rise can be estimated to permit the delivery of controlled heating to precisely defined locations in controlled hyperthermia cancer treatment. The actual experiment with human is under investigation

Published in:

Sensors Journal, IEEE  (Volume:7 ,  Issue: 3 )