By Topic

A Proportional-Integrator Type Adaptive Critic Design-Based Neurocontroller for a Static Compensator in a Multimachine Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mohagheghi, S. ; Georgia Inst. of Technol., Atlanta, GA ; Del Valle, Y. ; Venayagamoorthy, G.K. ; Harley, R.G.

A novel nonlinear optimal controller for a static compensator (STATCOM) connected to a power system, using artificial neural networks, is presented in this paper. The action dependent heuristic dynamic programming, a member of the adaptive critic designs family is used for the design of the STATCOM neurocontroller. This neurocontroller provides optimal control based on reinforcement learning and approximate dynamic programming. Using a proportional-integrator approach, the proposed neurocontroller is capable of dealing with actual rather than deviation signals. Simulation results are provided to show that the proposed controller outperforms a conventional PI controller for a STATCOM in a small and large multimachine power system during large-scale faults, as well as small disturbances

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 1 )