By Topic

Sol-Gel Synthesis of Palladium-Doped Silica Nanocomposite Fiber Using Triton X-100 Micelle Template and the Application for Hydrogen Gas Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haiquan Guo ; Inst. for Clean Energy Technol., Mississippi State Univ., Starkville, MS ; Tao, S.

Palladium-doped silica nanocomposites were synthesized via a sol-gel technique combined with a template of Triton X-100 micelle. The freshly prepared sol sample of Pd-doped silica nanocomposites was investigated by TEM. Determined from the TEM image, the sizes of the Pd nanoparticles are narrowly distributed, which are around 30 nm in diameter. The prepared sol solution of the sample was injected into a Tygon Microbore Autoanalysis tubing. After 14 days gelatinization, a transparent porous optical fiber was obtained. The response of the fiber to hydrogen gas was tested by using a fiber-optic spectrometric method. The palladium-doped silica nanocomposite fiber is sensitive upon exposure to hydrogen gas and the response is reversible. This palladium-doped silica nanocomposite fiber can be applied as a new kind of hydrogen gas sensor

Published in:

Sensors Journal, IEEE  (Volume:7 ,  Issue: 3 )