Cart (Loading....) | Create Account
Close category search window

An Effective Design of Deadlock-Free Routing Algorithms Based on 2D Turn Model for Irregular Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Akiya Jouraku ; Dept. of Inf. & Comput. Sci., Keio Univ., Yokohama ; Koibuchi, M. ; Amano, H.

System area networks (SANs), which usually accept arbitrary topologies, have been used to connect hosts in PC clusters. Although deadlock-free routing is often employed for low-latency communications using wormhole or virtual cut-through switching, the interconnection adaptivity introduces difficulties in establishing deadlock-free paths. An up*/down* routing algorithm, which has been widely used to avoid deadlocks in irregular networks, tends to make unbalanced paths as it employs a one-dimensional directed graph. The current study introduces a two-dimensional directed graph on which adaptive routings called left-up first turn (L-turn) routings and right-down last turn (R-turn) routings are proposed to make the paths as uniformly distributed as possible. This scheme guarantees deadlock-freedom because it uses the turn model approach, and the extra degree of freedom in the two-dimensional graph helps to ensure that the prohibited turns are well-distributed. Simulation results show that better throughput and latency results from uniformly distributing the prohibited turns by which the traffic would be more distributed toward the leaf nodes. The L-turn routings, which meet this condition, improve throughput by up to 100 percent compared with two up*/down*-based routings, and also reduce latency

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.