By Topic

Optimal Power Flow of Multiple Energy Carriers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Geidl, Martin ; Power Syst. Lab., Eidgenossische Tech. Hochschule, Zurich ; Andersson, G.

This paper presents an approach for combined optimization of coupled power flows of different energy infrastructures such as electricity, gas, and district heating systems. A steady state power flow model is presented that includes conversion and transmission of an arbitrary number of energy carriers. The couplings between the different infrastructures are explicitly taken into account based on the new concept of energy hubs. With this model, combined economic dispatch and optimal power flow problems are stated covering transmission and conversion of energy. A general optimality condition for optimal dispatch of multiple energy carriers is derived, and the approach is compared with the standard method used for electrical power systems. Finally, the developed tools are demonstrated in examples

Published in:

Power Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )