By Topic

Optimization of Control Parameters for Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
John J. Grefenstette ; Computer Science Department, Vanderbilt University, Nashville, TN 37235, USA

The task of optimizing a complex system presents at least two levels of problems for the system designer. First, a class of optimization algorithms must be chosen that is suitable for application to the system. Second, various parameters of the optimization algorithm need to be tuned for efficiency. A class of adaptive search procedures called genetic algorithms (GA) has been used to optimize a wide variety of complex systems. GA's are applied to the second level task of identifying efficient GA's for a set of numerical optimization problems. The results are validated on an image registration problem. GA's are shown to be effective for both levels of the systems optimization problem.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics  (Volume:16 ,  Issue: 1 )