By Topic

Fast Decoupled Load Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stott, B. ; Power Systems Laboratory University of Manchester Institute of Science and Technology ; Alsac, O.

This paper describes a simple, very reliable and extremely fast load-flow solution method with a wide range of practical application. It is attractive for accurate or approximate off-and on-line routine and contingency calculations for networks of any size, and can be implemented efficiently on computers with restrictive core-store capacities. The method is a development on other recent work employing the MW-¿/ MVAR-V decoupling principle, and its precise algorithmic form has been determined by extensive numerical studies. The paper gives details of the method's performance on a series of practical problems of up to 1080 buses. A solution to within 0.01 MW/MVAR maximum bus mismatches is normally obtained in 4 to 7 iterations, each iteration being equal in speed to 1¿ Gauss-Seidel iterations or 1/5th of a Newton iteration. Correlations of general interest between the power-mismatch convergence criterion and actual solution accuracy are obtained.

Published in:

Power Apparatus and Systems, IEEE Transactions on  (Volume:PAS-93 ,  Issue: 3 )