By Topic

Miniature Accelerometer and Multichannel Signal Processor for Fiberoptic Fabry–Pérot Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A miniature accelerometer based on silicon microelectromechanical systems (MEMS) fabrication technology has been developed. Using a beam-suspended proof mass and a Fabry-Peacuterot sensing gap, this accelerometer is fiber coupled to a miniature, multichannel, optical readout system which was developed for application in compact optical sensor systems. The approximately 4 mmtimes7 mmtimes2 mm accelerometer can be tailored to cover milli-g to kilo-g acceleration ranges. The miniature readout system is enclosed in approximately a 2 cmtimes8 cmtimes1 cm package, one of the smallest ever reported, and implements the complete optical path for a three-channel embodiment of a multichannel, highly sensitive and accurate, in-phase and quadrature (IQ) optical measurement system for Fabry-Peacuterot sensors. A variety of fiber-based sensors (temperature, strain, pressure, etc.) are commercially available using this Fabry-Peacuterot technique. The complete measurement system with the accelerometer was tested using a shaker table. Sample results are presented for 100 Hz, 10-g peak-peak acceleration

Published in:

IEEE Sensors Journal  (Volume:7 ,  Issue: 2 )