By Topic

Image Content Annotation Based on Visual Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Ye ; Sch. of Inf. Technol. & Comput. Sci., Wollongong Univ., NSW ; Ogunbona, P. ; Jianqiang Wang

Automatic image content annotation techniques attempt to explore structural visual features of images that describe image content and associate them with image semantics. In this paper, two types of concept spaces, atomic concept and collective concept spaces, are defined and the annotation problems in those spaces are formulated as feature classification and Bayesian inference, respectively. A scheme of image content annotation in this framework is presented and evaluated as an application of photo categorization using MPEG-7 VCE2 dataset and its ground truth. The experimental results show a promising performance

Published in:

Multimedia, 2006. ISM'06. Eighth IEEE International Symposium on

Date of Conference:

Dec. 2006